Picosecond laser-pump, x-ray probe spectroscopy of GaAs

نویسندگان

  • B. W. Adams
  • M. F. DeCamp
  • E. M. Dufresne
  • D. A. Reis
چکیده

A laser-pump, x-ray probe spectroscopic experiment is described, and the results are shown. The Ga Ka x-ray fluorescence following x-ray absorption, at the Ga K absorption edge was measured, and its increase due to excitation with subpicosecond pulses of laser light at 4.6 eV photon energy was determined. The x-ray absorption, and thus the fluorescence, is increased for about 200 ps after the laser pulse because additional final states for the x-ray absorption are cleared in the valence band by the laser excitation. The technique could eventually lead to a femtosecond pump-probe spectroscopy with an absolute reference energy level and also to a femtosecond x-ray detector. This is of particular importance to future short-pulse x-ray sources, such as free-electron lasers. © 2002 American Institute of Physics. @DOI: 10.1063/1.1516849#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A high-repetition rate scheme for synchrotron-based picosecond laser pump/x-ray probe experiments on chemical and biological systems in solution.

We present the extension of time-resolved optical pump/x-ray absorption spectroscopy (XAS) probe experiments towards data collection at MHz repetition rates. The use of a high-power picosecond laser operating at an integer fraction of the repetition rate of the storage ring allows exploitation of up to two orders of magnitude more x-ray photons than in previous schemes based on the use of kHz l...

متن کامل

X-ray pump optical probe cross-correlation study of GaAs.

Ultrafast dynamics in atomic, molecular and condensed-matter systems are increasingly being studied using optical-pump, X-ray probe techniques where subpicosecond laser pulses excite the system and X-rays detect changes in absorption spectra and local atomic structure(1-3). New opportunities are appearing as a result of improved synchrotron capabilities and the advent of X-ray free-electron las...

متن کامل

Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution.

We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole vi...

متن کامل

Ultrafast laser pump X-ray probe experiments by means of asynchronous sampling

A high time resolution in the picosecond range is required for the time-domain investigation of phonon dynamics in crystalline systems. Following a recently developed scheme in the visible spectrum, this resolution can be achieved by a method called asynchronous optical x-ray sampling (ASOXS). A pulsed femtosecond laser with high repetition rate is synchronized to the electron bunches in a stor...

متن کامل

Ultrafast spin-state photoswitching in a crystal and slower consecutive processes investigated by femtosecond optical spectroscopy and picosecond X-ray diffraction.

We report the spin state photo-switching dynamics in two polymorphs of a spin-crossover molecular complex triggered by a femtosecond laser flash, as determined by combining femtosecond optical pump-probe spectroscopy and picosecond X-ray diffraction techniques. The light-driven transformations in the two polymorphs are compared. Combining both techniques and tracking how the X-ray data correlat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002